Convergence of GAOR Iterative Method with Strictly α Diagonally Dominant Matrices

نویسندگان

  • Guangbin Wang
  • Hao Wen
  • Ting Wang
چکیده

Guangbin Wang, Hao Wen, and Ting Wang Department of Mathematics, Qingdao University of Science and Technology, Qingdao 266061, China Correspondence should be addressed to Guangbin Wang, [email protected] Received 11 June 2011; Revised 20 September 2011; Accepted 22 September 2011 Academic Editor: Yongkun Li Copyright q 2011 Guangbin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss the convergence of GAOR method for linear systems with strictly α diagonally dominant matrices. Moreover, we show that our results are better than ones of Darvishi and Hessari 2006 , Tian et al. 2008 by using three numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the convergence of the generalized AOR iterative method for linear systems

Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Converg...

متن کامل

Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices

113–123] proved that the convergence rate of the preconditioned Gauss–Seidel method for irreducibly diagonally dominant Z-matrices with a preconditioner I + S α is superior to that of the basic iterative method. In this paper, we present a new preconditioner I + K β which is different from the preconditioner given by Kohno et al. and prove the convergence theory about two preconditioned iterati...

متن کامل

Convergence of Iterative Methods for Nonclassically Damped Dynamic Systems

This paper deals with two computationally efficient iterative methods for determining the response of nonclassically damped dynamic systems. Rigorous analytical convergence results related to these iterative methods are provided. Sufficient conditions under which these two iterative schemes are convergent are derived. Three different kinds of damping matrices, namely, (i) strongly diagonally do...

متن کامل

Ela Schur Complements of Generally Diagonally Dominant Matrices and a Criterion for Irreducibility of Matrices∗

As is well known, the Schur complements of strictly or irreducibly diagonally dominant matrices are H−matrices; however, the same is not true of generally diagonally dominant matrices. This paper proposes some conditions on the generally diagonally dominant matrix A and the subset α ⊂ {1, 2, . . . , n} so that the Schur complement matrix A/α is an H−matrix. These conditions are then applied to ...

متن کامل

Some New Upper Bounds for the Spectral Radius of Iterative Matrices

In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones. Keywords—doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011